Restoration measures in shallow lakes

Water quality improvement also reduce greenhouse gas emissions

Deltares: Stefan Jansen, Wouter van der Star, Sacha de Rijk Witteveen + Bos: Sebastiaan Schep, Emma van Delen, Carina Pohnke, Marcel Klinge, Casper Cussell

Dr. Martine Kox Researcher and consultant

Martine.kox@deltares.nl

Deltares

NUMBER OF STREET, STRE

Dredging to improve water quality

Water quality improvement has many benefits:

- Reduction of Algal blooms
- Improvement of ecological quality (plants, fish, etc)
- Improvement for recreational purposes

...Also reduction of greenhouse gases

Greenhouse gas balance

Greenhouse gas balance

Relevant greenhouse gases

Greenhouse gas		CO ₂ equivalent
Carbon dioxide	CO ₂	1 x
Methane	CH ₄	>25 x
Nitrous oxide	N ₂ O	298 x

Relevance of GHG from shallow waters

- National and international climate goals and agreements
 - 2030 55% reduction of GHG emissions (relative to 1990)
 - 2050 neutral-emissions
- Shallow water systems can cause high emissions
 - Shallow ditches alone: 16% of methane emission in NL

→ Need for understanding GHG emissions from shallow waters

BlueCAN project

Goals:

- Quantify GHG emissions from shallow surface waters
- Reveal dominant processes
- Develop tool/method to assess GHG emission

Status

- Fase 1: measured and modelled based on 4 shallow lakes in NL
- Fase 2: (currently ongoing): expansion in locations and surface water types (ditches, small streams)

BlueCan study approach

Experimental

Mathematical modelling

Fase 1: cases

Results

Location	ТОС (%)	DOC (mg/L)	P pw (mg/L)	P sw (mg/L)	Water quality
Loenderveense Plas	35	10	0,03	0,03	Good
Dobbeplas	2-5	13-24	0,05-0,18	0,01-0,05	Good
Wormer-Jisperveld	30	27	0,2-2	0-0,06	Poor
Oostmadeplas	2	25	3-4	1	Poor

Blue CAN

Poor water quality (eutrofication):

• High algae content (yearly blooms) in eutrophic conditions

Poor water quality (eutrofication):

• High algae content (yearly blooms) in eutrophic conditions

Primary production

Poor water quality (eutrofication):

- High algae content (yearly blooms) in eutrophic conditions
 - \rightarrow high sedimentation
 - \rightarrow high mineralization rate

Primary production

Poor water quality (eutrofication):

High algae content (yearly blooms) in eutrophic conditions

- \rightarrow high sedimentation rate
- \rightarrow high mineralization rate

Sediment becomes anaerobic

→ high **methane emission**

Toop development BlueScan

Conceptual approach

3. Input carbon (org), direct

4. Management and measures *Dredging*

1. N and P loads (in equilibrium)

Blue scan tool (see next)

Measurements

2. Mud depth and composition

Insight in GHG emission required based on:

5. Net emissions CO_2 , CH_4 , N_2O

BlueScan tool system characteristics

Input

- 1. Sediment type (Clay, peat, sand)
- 2. Fetch (m)
- 3. Waterdepth (m)
- 4. Flow rate(mm/d)
- 5. P-load (mg/m²/d)
- 6. Surface area(ha)

Output

Emission: CO₂, CH₄, N₂O (in ton CO₂ eq/ha/jaar)

Blue

Behind the BlueScan tool mathmetical models

- Waterquality models Delwaq & PCLake → Best of both!
- Expanded with Carbon cycle

	Delwaq	PCLake
Proxy for emissions	Yes	Yes
CO ₂ /CH ₄	Yes	No
Hysteresis	No	Yes

- PCLake with correction ratio CO₂/CH₄ from Delwaq
- Delwaq with correction algae/plant ratio from PCLake

Conclusions

- Significant emissions from sediments -in shallow lakes-
- Water quality is an important determinant

Water quality improvement & greenhouse gas emission reduction go hand in hand

• Measurements and tool can give a good order of magnitude indication of emissions

Next steps

- Emission measurements over a wider range of cases
- Emissions in ditches/larger lakes
- Emissions of nitrous oxide
- Emissions from dredging

Recent developments

• 2019 *Refinement* to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories

Emissions from human-controlled waters are taken into account

Default for fresh/brackish lakes:
4.6 ton/ha CO₂-eq per yr

2 biggest climate-related challenges and opportunities for sediment management

Challenges:

- Fulfilling European and national CO₂-emission goals (zero emission in 2050) without cost and reliability effects
- Manage soft sediment in such a way that emissions from sediments are minimized (strategies)

Opportunities

- Water quality measures and reduction of GHG go hand in hand, which makes it possible to pool funding for both activities.
- Emission reductions are calculated compared to a base year (often 1990). As emissions from soft sediment have never been minimized, actions do have effect.

Thank you for your attention Questions?

Tool (preliminary version)

Bekijk het verschil tussen de referentie situatie en de gekozen P-belasting

Varieer met

de P-

belasting.

10

9

5

4.5

4

3.5

3 2.5

2

1

0.5 0

Besparing per jaar: De totale hoeveelheid besparing van broeikasgassen uitgedrukt in CO2-equivalent is 2,4k Kg.

30,0 Zonnepanelen

0,0 Windturbines

Source: Global Carbon Project; Carbon Dioxide Information Analysis Centre (CDIAC)

Note: CO₂ emissions are measured on a production basis, meaning they do not correct for emissions embedded in traded goods. OurWorldInData.org/co2-and-other-greenhouse-gas-emissions/ • CC BY